jeudi 30 janvier 2014

Cianobacteria, our little hero

The short argument :



Without cyanobacteria - no fixed nitrogen is available.



Without fixed nitrogen, no DNA, no amino-acids, no protein can be synthesised.



Without DNA, no amino-acids,protein, or cyanobacteria are possible.



Thats called a interdependent system. It cannot have evolved in small steps. All must exist at once.



The long argument :



Could the oxygen and nitrogen cicle be explained by naturalistic means ? The reason for the abundance of oxygen in the atmosphere is the presence of a very large number of organisms which produce oxygen as a byproduct of their metabolism. Cyanobacteria or blue-green algae became the first microbes to produce oxygen by photosynthesis. They are one of the oldest bacteria that live on earth, said to exist perhaps as long as 3.5 billion years. And their capabilities are nothing more than astounding. No cianobacteria, no oxygen, no higher life forms. These cianobacterias have incredibly sophisticated enzyme proteins and metabolic pathways, like the electron transport chains, ATP synthase motors, circadian clock, the photosynthetic light reactions, carbon concentration mechanism, and transcriptional regulation , they produce binded nitrogen through nitrogenase, a highly sophisticated mechanism to bind nitrogen, used as a nutrient for plant and animal growth. The Nitrogen cycle is a lot more complex than the carbon cycle. Nitrogen is a very important element. It makes up almost 80% of our atmosphere, and it is an important component of proteins and DNA, both of which are the building blocks of animals and plants. Therefore without nitrogen we would lose one of the most important elements on this planet, along with oxygen, hydrogen and carbon. There are a number of stages to the nitrogen cycle, which involve breaking down and building up nitrogen and it’s various compounds.There is no real starting point for the nitrogen cycle. It is an endless cycle. Potential gaps in the system cannot be reasonably bypassed by inorganic nature alone. It must have a degree of specificity that in all probability could not have been produced by chance. A given function or step in the system may be found in several different unrelated organisms. The removal of any one of the individual biological steps will resort in the loss of function of the system. The data suggest that the nitrogen cycle may be irreducibly interdependent based on the above criteria. No proposed neo-Darwinian mechanisms can explain the origin of such a system.The ultimate source of nitrogen for the biosynthesis of amino acids is atmospheric nitrogen (N2), a nearly inert gas. Its needed by all living things to build proteins and nucleic acids. This is one of the hardest chemical bonds of all to break. So, how can nitrogen be brought out of its tremendous reserves in the atmosphere and into a state where it can be used by living things? To be metabolically useful, atmospheric nitrogen must be reduced. It must be converted to a useful form. Without "fixed" nitrogen, plants, and therefore animals, could not exist as we know them. This process, known as nitrogen fixation, occurs through lightening, but most in certain types of bacteria, namely cianobacteria. Even though nitrogen is one of the most prominent chemical elements in living systems, N2 is almost unreactive (and very stable) because of its triple bond (N≡N). This bond is extremely difficult to break because the three chemical bonds need to be separated and bonded to different compounds. Nitrogenase is the only family of enzymes capable of breaking this bond (i.e., it carries out nitrogen fixation). Nitrogenase is a very complex enzyme system. Nitrogenase genes are distributed throughout the prokaryotic kingdom, including representatives of the Archaea as well as the Eubacteria and Cyanobacteria.With assistance from an energy source (ATP) and a powerful and specific complementary reducing agent (ferredoxin), nitrogen molecules are bound and cleaved with surgical precision. In this way, a ‘molecular sledgehammer’ is applied to the NN bond, and a single nitrogen molecule yields two molecules of ammonia. The ammonia then ascends the ‘food chain’, and is used as amino groups in protein synthesis for plants and animals. This is a very tiny mechanism, but multiplied on a large scale it is of critical importance in allowing plant growth and food production on our planet to continue. ‘Nature is really good at it (nitrogen-splitting), so good in fact that we've had difficulty in copying chemically the essence of what bacteria do so well.’ If one merely substitutes the name of God for the word 'nature', the real picture emerges.These proteins use a collection of metal ions as the electron carriers that are responsible for the reduction of N2 to NH3. All organisms can then use this reduced nitrogen (NH3) to make amino acids. In humans, reduced nitrogen enters the physiological system in dietary sources containing amino acids. One thing is certain—that matter obeying existing laws of chemistry could not have created, on its own, such a masterpiece of chemical engineering.Without cyanobacteria - no fixed nitrogen is available.Without fixed nitrogen, no DNA, no amino-acids, no protein can be synthesised. Without DNA, no amino-acids,protein, or cyanobacteria are possible. So thats a interdependent system.





via JREF Forum http://ift.tt/1khAr6R

Aucun commentaire:

Enregistrer un commentaire